报告人:赵熙乐(电子科技大学)
时间:2024年08月29日 14:30
地址:理科楼LA103
摘要:The regularizer, which incorporates prior knowledge of images, is cornerstone of inverse imaging problem modelling. In this talk, we will first review the classical regularizers, including total variation regularizer, low-rank regularizer, and nonlocal regularizer. Then we will discuss the limitations of classical hand-crafted regularizers (e.g., expressive capability, applicability, and flexibility). To address the above limitations of classical regularizers, we suggest a unified Continuous Modeling Perspective for imaging science, which continuously represents discrete data by elegantly leveraging a deep neural network. This paradigm allows us to deconstruct and reconstruct the classical regularizers readily. Extensive experiments demonstrate the promising performance of the continuous modeling perspective.
简介:赵熙乐,电子科技大学教授、博导,中国工业与应用数学学会副秘书长,入选电子科技大学百人计划和四川省学术和技术带头人后备人选。撰写Elsevier出版社和科学出版社出版的学术专著章节2章,第一/通讯在权威SIAM 系列期刊(SIIMS和SISC)和IEEE系列期刊(TIP、TNNLS、TCYB、TCVST、TCI和TGRS)、ISPRS及计算机学会A类会议CVPR和AAAI等发表研究工作。研究成果获四川省科技进步一等奖两项(自然科学类、科技进步类)、第一、二届川渝科技学术大会优秀论文一等奖,计算数学会青年优秀论文竞赛二等奖。主持国自然面上项目(2项)、国自然青年项目、华为项目。
邀请人:李寒宇
欢迎广大师生积极参与!